psa_reduce.py¶
The rp/psa_reduce.py
implements the reduce step by combining
the partial results from mdanalysis_psa_partial.py into the full
PSA distance matrix. It also contains analysis code to cluster and
plot the matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""\
Combine output files from radical.pilot runs of PSA (block matrices)
into full symmetric distance matrix, save the complete matrix, and
cluster it (using Ward's linkage). The clustered matrix together with
its dendrogram is written to an output file.
If output files are still missing, warnings are printed and the
entries in the matrix are set to 0.
NOTE: This script is adapted to the tutorial and DIMS trajectories are
labelled in the plot with a thin bar whereas FRODA trajectories are
labelled with a heavy double bar. Change the code (look for the
function make_labels()) if you want to use it for other data.
"""
import os.path
import json
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import scipy.cluster.hierarchy
def combine(traj, manifest):
trj = json.load(open(traj))
N = len(trj[0])
D = np.zeros((N, N))
mf = json.load(open(manifest))
missing = []
for subD, _, (i0, i1), (j0, j1) in mf:
try:
D[i0:i1, j0:j1] = np.load(subD)
D[j0:j1, i0:i1] = D[i0:i1, j0:j1].T
except IOError:
missing.append(subD)
if missing:
print("WARNING: Missing data: output files\n{}\n"
"could not be found".format(", ".join(missing)))
return D
def cluster(distArray, method='ward', count_sort=False,
distance_sort=False, no_plot=False, no_labels=True,
color_threshold=4):
"""Cluster trajectories and optionally plot the dendrogram.
:Arguments:
*method*
string, name of linkage criterion for clustering [``'ward'``]
*no_plot*
boolean, if ``True``, do not render the dendrogram [``False``]
*no_labels*
boolean, if ``True`` then do not label dendrogram [``True``]
*color_threshold*
For brevity, let t be the color_threshold. Colors all the
descendent links below a cluster node k the same color if k is
the first node below the cut threshold t. All links connecting
nodes with distances greater than or equal to the threshold are
colored blue. If t is less than or equal to zero, all nodes are
colored blue. If color_threshold is None or ‘default’,
corresponding with MATLAB(TM) behavior, the threshold is set to
0.7*max(Z[:,2]). [``4``]]
:Returns:
list of indices representing the row-wise order of the objects
after clustering
"""
matplotlib.rcParams['lines.linewidth'] = 0.5
Z = scipy.cluster.hierarchy.linkage(distArray, method=method)
dgram = scipy.cluster.hierarchy.dendrogram(
Z, no_labels=no_labels, orientation='left',
count_sort=count_sort, distance_sort=distance_sort,
no_plot=no_plot, color_threshold=color_threshold)
return Z, dgram
def plot_clustered_distances(dist_matrix, filename=None, linkage='ward', count_sort=False,
distance_sort=False, labels=None,
figsize=4.5, labelsize=12):
"""Plot a clustered distance matrix.
Using method *linkage* along with the corresponding
dendrogram. Rows (and columns) are identified using the list of
strings specified by `labels`.
:Arguments:
*filename*
string, save figure to *filename* [``None``]
*linkage*
string, name of linkage criterion for clustering [``'ward'``]
*count_sort*
boolean, see scipy.cluster.hierarchy.dendrogram [``False``]
*distance_sort*
boolean, see scipy.cluster.hierarchy.dendrogram [``False``]
*figsize*
set the vertical size of plot in inches [``4.5``]
*labels*
list of labels, sorted like the original trajectories [``None``]
*labelsize*
set the font size for colorbar labels; font size for path labels on
dendrogram default to 3 points smaller [``12``]
If *filename* is supplied then the figure is also written to file (the
suffix determines the file type, e.g. pdf, png, eps, ...). All other
keyword arguments are passed on to :func:`pylab.imshow`.
"""
# make sure that this is a square distance matrix
assert dist_matrix.ndim == 2
assert dist_matrix.shape[0] == dist_matrix.shape[1]
npaths = len(dist_matrix)
dgram_loc, hmap_loc, cbar_loc = _get_plot_obj_locs()
aspect_ratio = 1.25
fig = plt.figure(figsize=(figsize*aspect_ratio, figsize))
ax_hmap = fig.add_axes(hmap_loc)
ax_dgram = fig.add_axes(dgram_loc)
Z, dgram = cluster(dist_matrix,
method=linkage,
count_sort=count_sort,
distance_sort=distance_sort)
rowidx = colidx = dgram['leaves'] # get row-wise ordering from clustering
ax_dgram.invert_yaxis() # Place origin at up left (from low left)
minDist, maxDist = 0, np.max(dist_matrix)
dist_matrix_clus = dist_matrix[rowidx,:]
dist_matrix_clus = dist_matrix_clus[:,colidx]
im = ax_hmap.matshow(dist_matrix_clus, aspect='auto', origin='lower',
cmap=plt.cm.YlGn, vmin=minDist, vmax=maxDist)
ax_hmap.invert_yaxis() # Place origin at upper left (from lower left)
ax_hmap.locator_params(nbins=npaths)
ax_hmap.set_xticks(np.arange(npaths), minor=True)
ax_hmap.set_yticks(np.arange(npaths), minor=True)
ax_hmap.tick_params(axis='x', which='both', labelleft='off',
labelright='off', labeltop='on', labelsize=0)
ax_hmap.tick_params(axis='y', which='both', labelleft='on',
labelright='off', labeltop='off', labelsize=0)
if labels:
rowlabels = [labels[i] for i in rowidx]
collabels = [labels[i] for i in colidx]
ax_hmap.set_xticklabels(collabels, rotation='vertical',
size=(labelsize-4), multialignment='center', minor=True)
ax_hmap.set_yticklabels(rowlabels, rotation='horizontal',
size=(labelsize-4), multialignment='left', ha='right',
minor=True)
ax_color = fig.add_axes(cbar_loc)
plt.colorbar(im, cax=ax_color, ticks=np.linspace(minDist, maxDist, 10),
format="%0.1f")
ax_color.tick_params(labelsize=labelsize)
# Remove major ticks from both heat map axes
for tic in ax_hmap.xaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
tic.label1On = tic.label2On = False
for tic in ax_hmap.yaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
tic.label1On = tic.label2On = False
# Remove minor ticks from both heat map axes
for tic in ax_hmap.xaxis.get_minor_ticks():
tic.tick1On = tic.tick2On = False
for tic in ax_hmap.yaxis.get_minor_ticks():
tic.tick1On = tic.tick2On = False
# Remove tickmarks from colorbar
for tic in ax_color.yaxis.get_major_ticks():
tic.tick1On = tic.tick2On = False
if filename is not None:
fig.savefig(filename, dpi=300, bbox_inches='tight')
return Z, dgram, dist_matrix_clus
def _get_plot_obj_locs():
"""Find and return coordinates for dendrogram, heat map, and colorbar.
:Returns:
tuple of coordinates for placing the dendrogram, heat map, and
colorbar in the plot.
"""
plot_xstart = 0.04
plot_ystart = 0.04
label_margin = 0.155
dgram_height = 0.2 # dendrogram heights(s)
hmap_xstart = plot_xstart + dgram_height + label_margin
# Set locations for dendrogram(s), matrix, and colorbar
hmap_height = 0.8
hmap_width = 0.6
dgram_loc = [plot_xstart, plot_ystart, dgram_height, hmap_height]
cbar_width = 0.02
cbar_xstart = hmap_xstart + hmap_width + 0.01
cbar_loc = [cbar_xstart, plot_ystart, cbar_width, hmap_height]
hmap_loc = [hmap_xstart, plot_ystart, hmap_width, hmap_height]
return dgram_loc, hmap_loc, cbar_loc
def make_labels(traj, mapping, no_label=""):
trajectories = json.load(open(traj))
labels = []
for trj in trajectories[1]:
for pattern, label in mapping.items():
if pattern in trj:
labels.append(label)
break
else:
labels.append(no_label)
return labels
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("-o", "--outfile", metavar="FILE",
default= "distance_matrix.npy",
help="save complete distance matrix to FILE")
parser.add_argument("-p", "--plot", metavar="FILE",
default="psa_distance_matrix.pdf",
help="plot clustered distance matrix to FILE")
parser.add_argument("-t", "--trajectories", metavar="FILE",
default="trajectories.json",
help="JSON file with the trajectories")
parser.add_argument("-f", "--manifest", metavar="FILE",
default="manifest.json",
help="JSON file with the complete manifest of all files "
"including the indices of the block matrices")
args = parser.parse_args()
# reduce: combine all submatrices
D = combine(args.trajectories, args.manifest)
np.save(args.outfile, D)
print("Created full distance matrix '{0}'".format(args.outfile))
# analyze: plot clustered distance matrix
# Label FRODA trajectories with a double bar and DIMS with a thin single bar
plot_clustered_distances(D, filename=args.plot,
labels=make_labels(args.trajectories,
{'DIMS': '.', 'FRODA': '--'}))
print("Plotted clustered distance matrix '{0}'".format(args.plot))
# plot as PNG for tutorial/web
figpng = os.path.splitext(args.plot)[0] + ".png"
plt.savefig(figpng, dpi=300)
print("Plotted clustered distance matrix '{0}'".format(figpng))
|